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Abstract

Cdf has never had a program whose goal was a systematic study and understand-
ing of the efficiency for recostruction of photon detection through the conversion
process. Here a first attempt is proposed: the conversion reconstruction efficiency
has been extracted from the data, focusing on the process D∗

0 → D0γ and than
basing its overall scale on another well measured quantity: the dacay of the charged
D∗ → D0π.
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1 Introduction

The aim of this project is the study of the photon conversion efficiency at CDF.
This method gives the most precise measure of photon momentum, whereas calorimet-
ric methods are much less precise and also tend to suffer from large background, due
to the presence of different mechanisms for soft photon production in hadron collisions
(π0 → γγ, etc). However the technique of reconstruction on photons from the conversion
process is farly inefficient because of the detector acceptance (CDF detector only store
tracks with tranverse momentum greater than 0.4 GeV), and therefore the measurements
suffer from a small sample size and are statistically limited.

The understanding of the performances of the CDF detector for the conversion is im-
portant for a variety of physics measurements involving electromagnetic decay products.
First because the position distributions of conversion candidates can be used to estimate
the distribution and quantity of material within the detector itself. And the uniform
tube, at 40 cm, that is 1% of a radiation length thick, is a very important and clear
reference to understand how much the simulations still need to be fixed in order to look
like data.
Another important reason to look at the conversion efficiency is its application to the
χc1,2 reconstruction: in fact, even if this efficiency will always be low, this technique of
photon reconstruction has the precision of the tracking system, allowing the recontruc-
tion of the charmonium states through the decay χc1,2 → J/ψ − γ, and giving a mass
resolution sufficient to separate the χ1(3510) from the χ2(3555).

In this report, after an overview of how the analysis process works at CDF, including
in particular a short description of the algorithm used for conversion reconstruction, we
will illustrate the main idea of this project and how we implemented it in some details.
Than we will point out the techniques used, showing fitting methods and the choises
made for cuts. And we’ll come to discuss some results, trying to draw a conclusion from
them.

3



2 The CDF detector

The Collider Detector at Fermilab (CDF) experimental collaboration is committed to
studying high energy particle collisions at the worlds highest energy proton-antiproton
collider.
The goal is to discover the identity and properties of the particles that make up the
universe and to understand the forces and interactions between those particles.

Figure 1: The CDF detector

The CDF detector is designed in many different layers:

• Beam Pipe: where the protons and anti-protons collide head on.

• Silicon Detector: This detector is used to track the path of charged particles
as they travel through the detector. It begins at a radius of r = 1.5 cm from the
beam line and extends to a radius of r = 40 cm from the beam line. The silicon
detector is composed of seven layers of silicon arranged in a barrel shape around
the beam pipe. Silicon is often used in charged particle detectors because of its
high sensitivity, allowing for high-resolution vertex and tracking.

• Central Outer Tracker (COT): It is also used to track the paths of charged
particles and is also located within a magnetic field. The COT, however, is not
made of silicon. Silicon is tremendously expensive and is not practical to purchase
in extreme quantities. COT is a gas chamber filled with tens of thousands of gold
wires arranged in layers and argon gas. Two types of wires are used in the COT:
sense wires and field wires. Sense wires are thinner and attract the electrons that
are released by the argon gas as it is ionized. The field wires are thicker than the
sense wires and attract the positive ions formed from the release of electrons.

• Solenoid Magnet: The purpose of the solenoid is to bend the trajectory of
charged particles in the COT and silicon detector by creating a magnetic field
parallel to the beam. The solenoid has a radius of r=1.5 m and is 4.8m in length.
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• Electromagnetic Calorimeters: It uses alternating sheets of lead and scintilla-
tor. Each layer of lead is approximately 3/4 in wide.

• Hadronic Calorimeters: This calorimeter uses steel in place of lead.

• Muon Detectors There are two aspects of the muon detectors: the planar
drift chambers and scintillators. There are four layers of planar drift cham-
bers, each with the capability of detecting muons with a transverse momentum
pT > 1.4GeV/c.
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3 How does the analysis process work?

3.1 Different analysis levels

DATA

SIMULATIONS

PRODUCTION ANALYSIS N-TUPLES

Figure 2: Different analysis levels

This section shortly outlines the path from the accelerator collisions to the generated
ROOT ntuples. Detector information is gathered during collisions (online), processed
later in a computer farm (offline), then run through a user-specific program. The results
of that program are in a ROOT file, which is used to generate the final plots.

As we can see from the diagram, after data recording, the first level is the PRODUC-
TION : it is made in such a way that it will work with both data and simulation as imput,
so that they’re treated in the exact same way. At this level all tracks are reconstructed,
but with no more specification.
At a higher level there is the ANALYSIS program, where a first stage association is
made: the selection is here based on requirements on good fit or mass ranges, for exam-
ple, but not strict ones.
All the information from the ANALYSIS level is than stored into N-Tuples, ready to be
used for further analysis.
Our project of analysis will work on this N-TUPLES level, adding more specific require-
ments and cuts on these stored variables.

3.2 Conversion algorithm

At the ANALYSIS level, a method for conversion identification is implemented.
Since our results of course will depend on how good we are at making this indentifica-
tion, it’s useful to describe the algorithm used.

The following requirements are used to select photon candidates:
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• a loop over oppositely charged tracks is made, with e+, e− mass assignments;

• the tracks with a pT above 400 MeV/c are checked for intersection: they are
required to come within:

– 2.0 cm in the transverse view

– 10 cm in the R-Z view;

• track pairs are considered further if their invariant mass is found to be less than
100 MeV/c2;

• all pairs that have survived these selections are then refit with vertex and pointing
constraints. The tracks are required to:

– be parallel : this is an esplicit “mass zero ” constraint

– have an intersection;

• Neutral vertex candidates are then saved for further study if the probability of
goos fit is greater then 10−4.
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4 Data and Simulation

4.1 Data Set

More data could be processed, but to start with, we chose to only process 4 periods,
from 14 to 17 (out of 38) of the xbhd0k data set.
This is just a small sample of all the available data set.

4.2 Simulations samples

We generated two different samples, with the same number of events.
The neutral D∗ were generated from the decay B+ → D∗

0π
+, whereas the charged ones

from the process B0 → D∗
+π−.

To simulate these decays, the standard event generator used for B-decays is invoked and
then the D∗s are allowed to decay naturally according to the PDG listings.
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5 Theoretical Approch

5.1 D∗s decays

In order to deduce the photon conversion efficiency, we focused on the decays of the D∗

(the first exited state of the D mesons, that are the lightest particles containing charm
quarks):

• D∗0 → D0γ

• D∗± → D0π

Why did we choose this two particular decays? What matters for our purposes is that
the D∗0 and the D∗± belong to the same isospin multiplet. In fact because of the isospin
simmetry we expect them to be produced in equal number (isospin invariant production)
and this will be crucial for our method.
But in comparing these two decays, we also need to take in mind the differences between
these 2 processes: in fact, first of all, they are both 2 body decays but the kinematics
looks a bit different since in the charged process the pion will be very “soft”, while the
photon energy will vary more (it has no mass), so that we cannot simply compare the
final state of this two particles.
Then a further difference is that the D∗

± decay is very common (the brancing ratio is
about 67,7%) and it’s easy to trigger, requiring:

• two tracks with transverse momentum higher than 2 GeV to detect the D0 → Kπ

• a track almost parallel to the D0 one for the other pion (because of its low energy).

Instead the neutral process is rarer, and this is not really because of the brancing ratio,
that is still quite high (about 38 %), but especially because of conversion: the point is
that we will not see all the events where the photon do not convert, and even if it does,
we will see the tracks of electron and positron from pair production according to the
detector acceptance and efficiency. So this time the requirements are:

• again two tracks with pT higher than 2.0 GeV to detect the D0

• two more tracks with pT higher than 0.4 GeV (e+, e−)

5.2 Main goal

The main goal of this project is to understand whether the following expression can be
used to obtain the conversion efficiency:

1 =
σD∗(2007)

σD∗(2010)
=
ND∗(2007)

ND∗(2010)

εD∗(2010)

εD∗(2007)
(1)

where:
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• the first ratio is the one of the cross-sections for the two processes;

• we rewrote this ratio as the ratio of the number of candidates (N), the neutral
over the charged ones, calculated from data;

• the ratio of the candidates need to be corrected through the efficiency ratio (ε)
derived instead from simulations;

and there is an assumption: isospin invariant production of the two different isospin
D∗ states, that is why the ratio of the cross sections is imposed to be 1.

We expect the efficiency and yields to be strong functions of transverse momentum,
angles (η) and other kinematics variables, but for this analysis we focused only on
transverse momentum: we first bin our sample of D∗ in 3 different pT (D∗) ranges
and then, in the neutral process case, for each pT (D∗

0) bin, we split it again into 3 more
pT (γ) bins. This will allow to study the conversion efficiency as a function of pT (γ).

5.3 Efficiency ratio

In equation (1) we have the ratio of efficiencies that should take into account a correction
of what we see in real data. How did we deduce it from simulations?
Its meaning can be better understood if we explicit it:

εD∗±

εD∗0
= ��

��ε(D0)

�
���ε(D0)

επ
εγ

=
N(D∗− → D0π−

[reco])

N(D∗0 → D0γ[reco])
=

N(D∗− → D0π−
[reco])

N(D∗0 → D0γ[gen])ε(γ)
(2)

So what we did was to rewrite the efficiency for D∗ as the product of the D0 and the
other final state partile ones, so that the efficiency of D0 is the same for the 2 processes
and cancels out and we only have the ratio of the pion over the photon efficiency. And
this is calculated as the number of reconstructed pion (equal of course to the number
of D∗±) over the number of reconstructed photons (that is the number of reconstructed
D∗0).
When we talk about reconstructed events from simulation, what we mean is that we
selected our “good events” analysing our simulated events with the same program used
for real data selection.
The parameter ε(γ)1(the unknown parameter we want to derive from this analysis) fi-
nally appear by replacing the reconstructed photons with all the generated ones: the
power of our method is that it allows to take all the fake photons we generated, and this
is crucial since we do not have a big sample for reconstructed D∗0.

1whose meaning will be clarified in the next sections.
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5.4 Photon efficiency

Now, depending on the selection made on this set of all generated photons, the param-
eter ε(γ) will turn out to have a different meaning.
Here two versions have been considered.

1st Method : In the first method the simplest choise has been implemented: we just
select all the photons generated from the decay of the D∗0: this corresponds to consider
both acceptance and efficiency to be 100%. In this way, our parameter will be the
product of the reconstruction efficiency and the conversion one, and will also include a
term of acceptance, A:

ε(γ) = εReco ∗ εConv ∗ A. (3)

2nd Method : In the second one we also tried to simulate the acceptance of the detec-
tor. This means that first, we had to simulate the conversion process (see next sections);
after that we selected only the events with the e+, e− tracks passing the acceptance
requirements (pT > 0.4GeV ) and also a simple efficiency requirement: we used the effi-
ciency function already known for pions2, so that we will measure not the recontruction
efficiency itself, but just the correction to this known shape (ε̂Reco).
So, with this selection, our parameter ε(γ) can be written as the product of two terms
(acceptance is already simulated):

ε(γ) = ε̂Reco ∗ εConv. (4)

We will not instead be able to divide the contribution of each of his two factors.

2CDF Note 8433
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6 Fitting techniques

In order to extract the number of candidates (real data and simulations) from both the
processes, we needed to perform some fits.

6.1 Models for signal

For the signals we chose the best fit between 3 different shapes: 1 or 2 gaussians and
the so called crystal ball.
The last one takes into account the presence of a radiative tail on the low side of the
mass, that actually starts to be visible in the histograms of the invariant mass we got
for the neutral process, if we do not bin in pT : presumably, this is due to energy loss of
the conversion electrons as they pass through the material of the inner tracker.
So it could reveal to be very useful when processing more data. For our 4-periods data
sample the gaussian signal still seemed to fit better, and so we only used the first 2
options.

6.2 Models for background

For the background shape instead, we made different attempts before choosing the same
shape for both for the neutral and charged D∗ decays:

• Line, ax+b: it is the simplest one, but it revealed to be enough to fit our simulation
characterized by the presence of very small background;

• a+ bx+ c
√
x

• xαe−Cx: this shape is already implemented for the charged D∗3, but appeared to
be not very stable for our samples.

• Polynomial, a+ bx+ bx2

• Modified polynomial, aP0(x)+bP1(x)+cP2(x): a combinations of the first 3 Cheby-
shev polynomials (ortogonal and normalized); this shape seemed to give the best
fit for our data, and therefore we used this one in order to perform the histograms
of the next section.

3CDF Note 7116
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6.3 Neutral process: cuts and fit outcomes

In the following histograms the difference of mass M(D∗0)−M(D0) in data is shown, for
3 different range of pT (D∗0), each divided into 3 bins of photon transverse momentum.
Here below the selection we are using on the events:

• 1.85 GeV < D0 Mass< 1.89 GeV

• Impact: |imp (D∗0)| < 0.02 cm (this is because we want our D∗0 track to point
back to the beam)

• Fit probability: |P(D∗0)| > 1e-4

• pT (γ) > 1.0 GeV

• |Flight(γ)| > 12 cm (this choise allow to strongly reduce the background, whereas
if we cut more the improvement is not significant)
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Figure 3: N(D∗0 → D0γ[reco]), pT (D∗) ∈ [7, 11]GeV [DATA]
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Figure 4: N(D∗0 → D0γ[reco]), pT (D∗) ∈ [11, 14]GeV [DATA]
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Figure 5: N(D∗0 → D0γ[reco]), pT (D∗) ∈ [14, 25]GeV [DATA]

14



What deserves to be mentioned is the pick that at low energy (on the left of the fitted
pick), that starts to be visible at high D∗ momentum: it is what is usually called “partial
reconstruction”, of the π0 in this case.
The explanation for it is that, as we go up in energy, another relevant channel of decay
for the D∗0 is the D0 − π0 one, with the π0 immediately decaying to γ − γ. So it can
happen for some events that only one of the photons from the π0 converts: in this case
the tracks of the D0 and this converting photon can be reconstruced as a D∗0 → D0γ
event, but of course this time the photon will be less energetic than expected for our main
pick (its energy being roughly half of the pion mass), so that we are able to distinguish
the two different contributions.

6.4 Charged process: cuts and fit outcomes

In the following histograms the difference of mass M(D∗) −M(D0) −M(π) for both
data and simulations is shown (in this case we only have 3 fit, for our 3 favourite ranges
of pT (D∗±)), after a selection using the following cuts:

• 1.85 GeV < D0 Mass< 1.89 GeV

• Impact: |imp (D∗)| < 0.02 cm

• Fit probability: |P(D∗)| > 1e-4

• pT (π) > 0.6 GeV
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Figure 6: N(D∗ → D0π[reco]) [DATA]
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Figure 7: N(D∗ → D0π[reco]) [SIM]
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7 First Method

7.1 Results for conversion efficiency

In the previous section we had no histrograms fitting the signal for the number of gen-
erated photons, from simulations (N(D∗0 → D0γ[gen])): the reason is that in this case
we have no background at all, so that we did not need any fit; instead we just counted
the number of events.

In the table below we report the results for the photon conversion efficiency obtained
using the second method (no trigger on acceptance):

pT (γ)�pT (D∗) [7, 11] [11, 14] [14, 25]
[1.0, 1.3] 0.0077 ± 0.0005 0.0046 ± 0.0008 0.005 ± 0.001
[1.3, 1.7] 0.022 ± 0.003 0.017 ± 0.001 0.011 ± 0.002
> 1.7 0 ± 0 0.024 ± 0.007 0.023 ± 0.002

Table 1: Conversion efficiency: Results (2nd Method)

The efficiency raises with pT (γ), that is what we would expect because the acceptance
of our detector improve as we go up in energy.
But on the other hand the behaviour of the number we got is not clear as a function of
pT (D∗).
So from here we miss a complete understanding of our results, also because we have no
candidates at all for high photon momentum and low D∗ momentum.
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8 Second Method

In order to better understand our results we implemented a second method to calculate
our efficiency.

8.1 Simulation of conversion process

In this case we needed a more specific selection for the generated photons and, in order
to implement it, we had to simulate the conversion process.
How did we generate the pair production? What we did is to start from taking all the
photons and then the photon energy fraction taken by the electron and positron was
generated according to the Rossi’s treatment for the Bethe-Heitler conversion (Figure
(8) ):

Ψ(x) ∝ [x2 + (1− x)2 +
2

3
x(1− x)]ln(183Z− 1

3 )− 1

9
x(1− x) (5)
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Figure 8: Electron energy fraction

This energy fraction is the only information we needed to generate: in fact this is enough
to apply the acceptance and efficiency cuts on pT .

8.2 Checks on acceptance

Before using all this simulated machinery, we made some checks to test it: this will
help us to understand if we can trust our simulation of acceptance and in this case we
could better use this second method giving us a more specific information, that is the
efficiency of reconstruction and conversion, with no dipendence on pT , already included
in the acceptance.

8.2.1 Check from Distribution of the Electron energy fraction

A possible non proper simulation of acceptance could be investigated by looking at the
distribution of the electron energy fraction.
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In the following histograms, the first one is referred to data: as a reference we selected
only photons converting at about 40 cm, in the uniform tube, where we can trust the
simulation more , so that we know we are looking at real conversions.
Simulations are plotted nearby. The one in the middle shows the simulated fraction,
after only the hard cut at 0.4 GeV for the transverse momentum of the e+, e− from pair
production. In the other one instead we also took into account the correction for the
efficiency (the known one for pions we already mentioned), that actually doesn’t make
a big diffence in the shape.
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Figure 9: Electron energy fraction, DATA and SIMULATIONS

Even if from these overall histograms data and simulations could seem different, investi-
gating more we concluded that this effect is not so important: in fact if instead we slice
the energy fraction in our pT (γ) bins, we do not see anymore differences between data
and simulation. A small discrepancy only starts to be visible for high energy photons
(Figure (12)).
So what we see in Figure (9) is almost the result of the different proporsion in distribu-
tion of the photon momentum: in simulations photons only come from D∗ decays, while
in data we are looking to all photons, coming from different sources (such as for example
the decay π0 → γγ, in which case the photon in the final state will be less energetic).
So this is a first check that tells us that we are simulating the acceptance of the detector
in the right way.
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Figure 10: Electron Energy Fraction, 1.0 < pT (γ)GeV < 1.3
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Figure 11: Electron Energy Fraction, 1.3 < pT (γ)GeV < 1.7
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Figure 12: Electron Energy Fraction, pT (γ)GeV > 1.7

8.2.2 Check from simulated photons

As another check on our acceptance (just looking at simulations this time) for particles
from pair production, we also compared the number of reconstructed photons with the
generated ones, but after our acceptance and efficienct trigger, as a function of pT (γ).
We just counted the number of events, having not background.
The results are shown in Table (2).
They show again that we are simulating quite well the real acceptance of the detector:
in fact the ratio of our two samples of reconstructed and generated photons remains
almost constant.
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pT (γ) GeV N(γ[FAKE]) N(γ[RECO]) N(γ[RECO])
N(γ[FAKE])

[1.0, 1.3] 35851 ± 189 3743 ± 61 0.104 ± 0.002
[1.3, 1.7] 47676 ± 218 4874 ± 70 0.102 ± 0.002
[1.7, 2.2] 48252 ± 220 5144 ± 72 0.107 ± 0.001
[2.2, 3.0] 54069 ± 233 5588 ± 75 0.103 ± 0.001
[3.0, 4.0] 40603 ± 202 4420 ± 66 0.109 ± 0.002
[4.0, 5.0] 23667 ± 154 2620 ± 51 0.111 ± 0.002

Table 2: Acceptance check

8.3 Results for conversion efficiency

From the previous section we concluded that our simulated acceptance works fine so that
we can trust it and use this second method to get our efficiency. Here again, because of
the absence of any backgroung we just counted, without any fit, the number of generated
photons in each bin.

In the table below we report the results for the efficiency using this alternative method:

pT (γ)�pT (D∗) [7, 11] [11, 14] [14, 25]
[1.0, 1.3] 0.066 ± 0.007 0.042 ± 0.009 0.037 ± 0.009
[1.3, 1.7] 0.13 ± 0.04 0.080 ± 0.009 0.049 ± 0.009
> 1.7 0 ± 0 0.11 ± 0.06 0.072 ± 0.009

Table 3: Conversion efficiency: Results (1st Method)

The results we got are not what we would have expected: we expected similar results for
photons with the same momentum (the rows), since the reconstruction of photons should
have nothing to do with the the particular process we are considering and in particular
with the energy of the parent particle. And actually we also expected similar results for
different range of pT (γ) since now we are already taking into accout the acceptance in
the definition of “generated photons”.
Instead what we can noticed is that the efficiency seems to raise with pT (γ) and to fall
with pT (D∗).
A further problem for the understanding of these results is the fact that we have few or
no candidates for high photon momentum and low D∗ momentum.
We concluded from here that these results were inconsistent, and for this reason we
investigated for possible errors.
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9 Sources of error and fixed results

9.1 Distribution of the D∗ decay angle

Possible sources of error can be searched into strong differences between simulations and
real data.
For example if we look at the distribution of the D∗ decay angle (the angle of the D0 in
the D∗ frame), we will see big discrepancies between data and simulation samples.

���� ���

����

��

We made this check for the charged D∗ first.
In the histograms referred to the charged D∗ (Figure (13)), showing the distribution of
cos(θ), the first one shows real data, the second one is what our original simulations
looked like, and the last one show the distribution of the modified simulations we are
now using in this analysis.
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Figure 13: Cos(θ) distribution, DATA and SIMULATIONS, D∗
±

The reason for such a different shape is that in data, the D∗s come from many different
sources (directly from the beam, from a secondary vertex and so on) and so the distri-
bution will be the results of all these components.
On the contrary, in simulations, for construction, we only have D∗s coming from B-
decays: these D∗s will be polarized so that they will decay as spin 1-particles and in
fact, as it is clear from the distribution, small angles are preferred (second histogram).
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So, as a first, very basic adjustment, we let the D∗s decay isotropically (third histogram).
But, even if it is not clear enough from the figure, our generated sample still look very
different from data (data distribution for cos(θ) raises faster than the simulated one).
How to fix this problem? If we look at the scatter plot of pT (π) versus pT (D∗±), we can
clearly see our hard acceptance cut: we noticed that actually it only affects our first two
pT (D∗) ranges ([7, 11]GeV, [11, 14]GeV ), so that if we focus only on our highest energy
range, here we have full acceptance, so that it does not matter anymore the difference
in the angular distribution.

Finally the same check was made for the neutral case, but in the last case we don’t have
a sample large enough (Figure (14)) to draw any conclusion.
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0
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9.2 Isospin invariant assumption

A mistake we finally found out has instead to do with our method: we are using the
assumption of isospin invariant production, and it is for this reason that we are looking
at D∗ in the same range of tranverse momentum. But the point is that, as we can
notice from the plots below, there is the correlation between the photon and the D∗

momentum, so that because of our binning in photon momentum, we are considering
D∗ with a different avarage momentum. In this way it is not satisfied anymore the
hypotesis:

〈pT (D∗
0)〉 ∼ 〈pT (D∗

±)〉 (6)

and this means that our assumption of isospin invariance fails.

In order to continue to use it we took a step back, avoiding the additional binning in
pT (γ).

9.3 Final result for Photon Efficiency

If we correct for these 2 big problems, we are left with just one range: pT (D∗) ∈
[14, 25]GeV .
Here we can calculate our efficiency and what we found is:

ε(γ) = 0.057± 0.004

.
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10 Conclusions

Four periods of the xbhd0k set of the CDF data has been used to investigate the photon
conversion efficiency, reaching a first estimate for it.
What deserves to be mentioned is that this analysis uses the reconstruction of the D∗0:
this means that we know how to reconstruct this neutral state, that is not very common,
the most of the analysis focusing on the charged one.
Of course more work need to be done. In fact so far we found a first reasonable estimate
for the conversion efficiency, but it can surely be improved using more data.
Furthermore, we also found issues in simulations that need to be fixed.
And finally, it would be important to remake the same analysis with a different method
for comparison: our result in fact is not supposed to depend on the method used and
the processes considerated.
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